

Hydrocolloids -The art of mixture

Carolin Bohlke

Wet pet food composition

Final Feed

18-25 % Dry matter

75-82 % Moisture

Wet pet food composition

Recipe

1-2 % Hydrocolloids and premix

30-50 % Water

50-70 % Meat

Wet pet food composition

PET

**

Simplified

~1% Hydrocolloid blend

→ "A small leak will sink a great ship"

Hydrocolloids:

Small amounts

Big impact

Sources of Hydrocolloids

Functionalities

What is the chalenge?

Raw materials

· (()

Recipe design

Application

Raw materials

Requirements of the finished product ?

Reliability of natural ingredients

(Harvest, weather, availability, concurrence food industry)

- \rightarrow Quality control essential
- \rightarrow Feed legislation
- \rightarrow Research always ongoing

Example: Carrageenan

Carrageenan A → 260 g/cm² → Ash 28% Raw material is not active substance!

More salt in A !!→ Effectivity & quality is lower!

Exchange raw materials/products based on data sheets? $\rightarrow No!$

Results depending on:

- Measuring method (Temperature, time, pH, added salts, buffer)
- Instruments (Texture analyser, mixer, beaker!)
- Water quality

 \rightarrow Practical raw material validation and comparison is needed!

Recipe design

All time favorite dream team

Thickener, salt, buffer...

Dream team player No. 1: Carrageenan MIAVIT λ-Carrageenan 1-Carrageenan k-Carrageenan в в в Α Α oso₃[⊖] OSO₃Θ CH₂ OH ⊖o₃sọ CH₂OH CH₂OH OSO-CH₂OH α Δ ... α A ···· H₂Ċ ····B* ····B⁻ ····B' 3 ЪЮ ⊖_{O3}SÒ oso₃⊖ ю HO ÓН - n - n _ n β-D-Galactoseα-D-3,6-Anhydro-**B-D-Galactose**α-D-Galactoseα-D-3,6-Anhydroβ-D-Galactosegalactose-2-sulfat 4-sulfat 2-sulfat 2.6-disulfat 4-sulfat galactose

Туре	Solubility in H ₂ O	Gel texture	viscosity
Карра	Na-salt soluble, K-salt > 60°C	Strong brittle gel with high syneresis, strength increases with [K ⁺]	low
lota	Na-salt soluble, K-salt > 60°C	Elastic, cohesive, gel without syeresis, strength depending on [Ca ²⁺]	high
Lambda	Cold & hot soluble	No gelling	high

Dream team player No. 2: Galactomannans

MIAVIT

Combination GM + SRC/RC: Synergism

(%) Fraction of LBG or konjac gum with κ-Carrageenan with 1% total dosage (Handbook of Hydrocolloids; Woodhead Publishing Limited 2009)

Combination GM + SRC/RC

- Reducing syneresis
- More elastic texture
- More gel strength/\$

Optimum at 0.3-0.4% \rightarrow Depending on type and quality!

The right dosage ?!

Validation process: Lab vs. industrial test

1. Laboratory test \rightarrow Without meat 2. Industrial test \rightarrow With meat

iome: huis George LANO	Without meat	
ereptur/ obstoff: 203649/00003/0 bornr.: p. 230069		

Laboratory ≠ industrial production Suited conditions → pH, salts, water quality, processing, meat quality

Application

Unique requirements

Interaction hydrcolloids and meat

Intrinsic binding is insufficient

Start at 35-45°C Finished at ca. 80°C

HC and additives can compensate!

After cooling texture is fixed \rightarrow Gelling agents Activity has to be given over WHOLE process \rightarrow Stabilizer

Proof of

concept

Raw material quality

- Much side gel
- Very soft

Change LBG quality Optimise ratio

Less costs better effect!

Same HC mixture and dosage

 \rightarrow Process update: changed order and longer mixing time

 \rightarrow Optimization always on ingredients AND process parameter

Tenes

all natural

carrageenan free

alternative proteins

vegan/vegetarian

All about... The art of mixture

 \rightarrow Good raw materials are essential

 \rightarrow Optimizing hydrocolloid mixtures to processing

 \rightarrow Ongoing research ... to meet growing challenges

...says thank you!!